

Page 1

Soft Coded Functions Guide

Introduction ... 2
Design Overview .. 3
SOFT CODED FUNCTIONS .. 7

Soft coded functions: Intro.. 7
SCF/SCP Commands .. 8

SCF/SCP Database Files ... 9
Macro Instruction Format ... 10
Complex Macro Instruction .. 11

Editing Macro Instructions ... 12
Soft Code Support Procedures .. 14

SOFTCODE Service Program Exports ... 14
Defining a function key .. 15

Soft coded Authorization Levels .. 17
Security monitor example ... 20

WRKPNLKEY – Work with panel key .. 21
WRKPNLOPT – Work with panel options .. 22
Editing an Option .. 23
WRKSFTUSR – Work with Soft Code User .. 24

User Controls .. 25
Soft Code Tables ... 26

Category table entries ... 27
Authority Level Entries... 28

Soft Code Program Example .. 29

Page 2

Introduction

The first programs I wrote were on the S/3 Mod 15D. The largest program you could present to the
system was 16K, unless you took advantage of the Shared Virtual Area (SVA) which would allow
you to max out a program at 48K. Obviously with only 16K to play with, programs were generally
limited to a single function, and typically complex processes would have to be built with a job
stream of small programs, sequentially staged to execute against a common set of files.

The S/38 had few limits in terms of program size and IBM did encourage monolith code
development. I only attempted about 3 applications before I realized the model was all wrong. Yes,
loading everything into main memory at once does mean that execution is fast (assuming your
monstrous program does not get paged out, which they invariably did). But the trade-off in terms of
maintainability simply wasn’t worth marginal performance gains.

I began looking for a better model for programs where functionality could be driven by database
entries instead of “hard-coded” instructions. I made a conscious attempted to strip common
functions out of programs and externalize as many of those functions as I could. From that point
forward, all my applications were modular in nature, limited in function and database driven.

I borrowed an idea from Bob Cozzi to place program function keys into a database file and have a
program react to the instruction on file, rather than react to the function key itself. I was able to
externalize functions, separating function definitions from the program. I extended the process to
include external program options and designed database files to contain program options and
function keys, turning them into macro instructions.

At the time the AS/400 was introduced, the payback to this methodology became clear. Converting
from the S/38, where F1 was an exit key to the AS/400, where F3 was the exit key, the programs
designed with soft-coded functions did not require any changes, only the database file was
updated—F1 entries in the function key database were simply updated to read F3, instead of F1. No
programs or displays were changed in order to implement the new system standard of F3 as the exit
function.

Shortly after the AS/400 arrived I incorporated a gate-level application security system into the
code. This, in effect, made application security an external function, controlled by a database file. I
also introduced external program help, by incorporating a generic help processor into the soft-
coded function key processor. (The concept of externalized help processes took shape after a
COMMON discussion with Carson Soule.)

As the IBM mid-range platform evolved, I began updating what I had come to think of as the soft-
coded application model. I began developing a method of separating presentation from data. This
was more of an evolutionary step, rather than a revolutionary step. Having created a mechanism for
external options, function keys, application security, and help, web or not, the next logical step was
to separate the presentation of the data from the data. With the advent of ILE, this became the
SOFTCODE service program.

Page 3

Design Overview

The program design concepts used in the Soft Code system are not necessarily unique in theory, but
rare in implementation. Though written primarily in RPG, the development model varies greatly
from the early models of top-down procedural codes familiar to most long-time RPG developers. It
is far more similar to the modular, event driven concepts that are found in the stateless environment
of CGI development, or web processes. In fact the service program and modules more closely
resemble a Java bean than traditional RPG application development.

In the Soft Code environment, programs are generally constructed without containing a database
file. Instead the program is bound to a service program or file manager module which contains to
data to be acted on. Typically an interactive program only manages the presentation of the data and
the data management itself is left to the I/O manager.

Page 4

This separation of presentation from data (and business rules) allows the RPG application to be
relatively small. Keeping the code compact makes maintenance easier and faster. And since time is
money, it also is cheaper to maintain throughout the Software Development Life Cycle (SDLC).

There is also an interesting by-product of this very modular style development; re-usable functions.
Since the data management is separate from the data presentation, web applications and traditional
5250-style applications can share the same data and data services.

There is no real need to replicate rules or I/O functions in order to serve up information. It has the
added benefit of applying the same rules to data from the web side, or the 5250 side of the
equation. Since the information is presented from a common source, the information displayed on a
5250 screen will match exactly the information presented through the browser—since the data
source is the same. This type of application structure produces reusable code and fits into the idea
of creating SOA type applications.

At the highest conceptual level, applications should simply provide services. The popular SOA
(Service Oriented Architecture) concept describes the goal fairly well. Because ultimately, isn’t that
what a business, any business, is about—providing services to a customer? Of course, without
further definition, SOA is just another TLA (Three Letter Acronym).

 The W3C defines SOA as:

 “A set of components which can be invoked, and whose interface descriptions can be published
and discovered.”

Quite frankly, with apologies to the W3C, that definition falls short of the mark. In the first place,
components don’t always appear as part of a set. Secondly, by W3C definition, SOA is only
comprised of implemented and deployed components, rather than the model on which they were

Page 5

built, (the ARCHITECTURE, if you please). Architecture implies a style, deployed or not. A more
practical definition of SOA might be:

The standards, practices, and models, that enable application functionality to be provided and
consumed as services published to satisfy the requirements of the service consumer. Services may
be invoked, published and discovered, regardless of implementation through a single interface,
based on a common (standard) form.

The current IBM Power Systems platform offers the opportunity to move forward toward SOA
without the expense of redeveloping legacy applications—embracing the soft-coded application
model rather than traditional top-down monolithic structures can:

1) Leverage existing applications
2) Help provide web services
3) Require minimal training of technical personnel

Page 6

With the introduction of the Integrated Language Environment (ILE) IBM offered a model of how
to build models aimed at providing services from a common interface. Service programs are very
much like Java classes. A Java class may be composed of a number of methods, bound together. If
a class is imported to an application, the methods of the class are directly available to the
application.

Services programs may be composed of a single language, such as RPG, or constructed of modules
of many different languages, C++, COBOL, CL, etc. The components of the service program are
referred to as procedures and resemble methods. Like a class, once a program is bound to the
service program, the application will have access to the procedures contained in the service
program. System i tools, such as IBM’s WDSC (Websphere Development Studio Client), will
allow service programs to be exposed as web services.

Page 7

SOFT CODED FUNCTIONS

Soft coded functions: Intro

New interactive application models should be designed with ILE in mind. Binding to the
SOFTCODE service program to manage function key use and program options leaves a
programmer free to create an application program independent of command key assignments, or
program options. With the support programs in place, the Soft Coded Function keys (SCF), and
Soft Coded Program options (SCP) allow for the development of concise data-centric application
programs.

As with any application development effort, keep in mind a few rules. Whether using Soft Code
design templates or not, do not write programs that attempt to perform too many functions.

 Rule of thumb for RPG programs:

 a) A program under 650 lines is ideal.

 a) A program of 700-900 lines is acceptable.

 b) A program of 1,200 lines is unwieldy.

 c) A program of 1,500 lines is approaching unmanageable.

 d) A program of 1,700 lines is unmanageable.

 e) A program of 2,000 lines could be considered epic.

 f) A program over 2,000 lines is something to terrify rookie programmers with.

Page 8

SCF/SCP Commands

Since function keys and program options are contained in a database rather than in the program, a
number of the applications within the Soft Code system have command interfaces created to invoke
SOFTCODE processes from a command line. The following commands may be entered to invoke
Soft Code processes.

CPYSFTDTA: Copy soft code data
EDTPNLKEY: Edit panel keys
EDTPNLOPT: Edit panel options
WRKPNLKEY: Work with panel keys
WRKPNLOPT: Work with panel options
WRKSECGTE: Work with security gate
WRKSFTUSR: Work with Soft Code Users

This set of commands provides an easy to remember management suite for the applications
designed to use the soft coded utilities. If they seem familiar, they should. The command syntax
mimics the IBM syntax of verb and object.

This suite of commands allows a developer to create and maintain application security, externally
defined panel options, and externally defined function key events.

Page 9

SCF/SCP Database Files

The program function keys and macro instructions are contained in the data base file, SCFUNCPF.
The program options and option macros are contained in the database file, SCOPTNPF. By
removing the function keys and options from the program, the operations performed by the options
and function keys may be maintained independently of the program itself.

Function key assignments and program options may be removed from the application without
changing the program code. Conversely adding new functions or program options can be performed
without changing the program code. (Unless a new parameter list happens to be introduced.)

Because the function editor manages a program’s options and functions, commands, such as
DSPMSG, or WRKACTJOB may be added to a program without any change to existing program
code. The Soft Code editor is coded to recognize a command (a string starting with an ampersand
‘&’) and execute the command. The program does not have to contain a routine to execute a
command, the function editor with provide the capability. In effect, the database files supporting
the Soft Code provide a method of building macro instructions for applications to share.

Another benefit of moving program functions and objects from the actual program (and display
file) is the text of the function is stored with the function. The text displayed for the function or
option is contained in the database along with the macro instruction. Thus a program can be
designed to be multi-lingual. On one application the F3 (Exit) function may read ‘Exit’ and in
another application the same function may read ‘Salida’ (Spanish), or ‘Ausgang’ (German).

A Soft Code application does not really react to a function key, or an option. The editor looks up
the function key or panel option and returns the ‘function’ to the requesting program. This increases
the flexibility of the application and allows it to be compatible with other system i environments.
For example a program may be coded to exit when the macro instruction returned is ‘EXIT’. The
macro ‘EXIT’ may be assigned to F3, to be consistent with AS/400 mode panels, or F7 (End Job)
so it is familiar to users used to working in the S/36 environment.

Page 10

Macro Instruction Format

The macro instruction field of the soft coded program options and function keys is 45 bytes long.
This instruction may contain several different types of operations. And in Soft Code, the macro
instruction may take several different formats.

An ampersand '&' in byte 1 identifies a CL command. The Soft coded function editor will pass this
command on to the generic command executive program to be processed.

 000000000111111111122222222223333333334444444
 123456789012345678901234567890123456789012345

 &WRKACTJOB
 |
 |____________Command to process

An asterisk (*) in byte 1 signals a reserved function. Code has been included in the soft-coded
function editor to process the macro instruction, it will not be returned to the requesting program.

 000000000111111111122222222223333333334444444
 123456789012345678901234567890123456789012345

 *HELP
 |
 |____________Soft coded internal process

With no special characters imbedded in the instruction, the macro instruction will be returned to the
requesting program for execution. In this case, the format is left to the requesting program to
interpret. A standard format for macro instructions to drive subroutines is evident in the process of
command keys and other common program operations.

EXSR @EditKeyPressed
SELECT;
WHEN SUBOP = 'CALL';
 EXSR @CALLS;
WHEN FUNCT = 'EXIT';
 QUIT();
WHEN FUNCT = 'RESET';
 EXSR @RESET;
WHEN FUNCT = 'PROMPT';
 EXSR @PROMPT;
WHEN FUNCT = 'MORE';
 DisplayKeys(cmdkey: z$key1: z$key2: M);
WHEN FUNCT = 'MOREOPT';
 DisplayOptions(option: z$opt1: z$opt2: O);
ENDSL

The sample code is designed to examine the macro (FUNCT) and perform the appropriate
subroutine; such as display more keys (DisplayKeys), or more program options (DisplayOptions),
or to exit the program (@EXIT).

Page 11

Complex Macro Instruction

 000000000111111111122222222223333333334444444
 123456789012345678901234567890123456789012345
 <---><--------><--------><----------------->
 CALL SC0335RP PLIST1 *RESERVED V
 | | | |
 | | | |___Action Code
 | | |
 | | |
 | | |
 | | |________________________________PARM list
 | |__Program name
 |___Operation code

 1-05 operation code
 6-15 program
 16-25 program data structure name
 26-44 RESERVED
 45-45 Action code: A = Add
 C = Change
 D = Delete
 V = View (display only)
 S = Sort

A file, SCMACRPF, has been created to be used as an externally defined data structure which can
be used in a program to define the macro. Using the externally defined macro provides consistency
in naming the various parts of the complex macro format.

Page 12

Editing Macro Instructions

Example:

The following D specs contain several externally defined data structures commonly associated with
the SOFTCODE development process.

 *==
 D CF E DS EXTNAME(SCKEYSPF)
 D PGMDS ESDS EXTNAME(SCPSTSPF)
 D DSPDS E DS EXTNAME(SCDSPFPF)
 D MACDS E DS EXTNAME(SCFUNCPF) INZ
 D OPTDS E DS EXTNAME(SCOPTNPF) INZ
 D FUNCT E DS EXTNAME(SCMACRPF) INZ
 D GATEPR E DS EXTNAME(SCGATEPF)

Though it is not a recommend practice, the macro instruction may be defined internally using RPG
I-specs. An example of the the program defined data structure re-defines the file defined function
macro (field name, FMACRO,) into its various components; the op-code, subprogram, calling
parameter list, and action.

 I DS
 I 1 45 FUNCT
 I 1 5 SUBOP
 I 6 15 SUBPGM
 I 16 25 CALLPM
 I 45 45 SUBACT

This subroutine is an example of using the format of the complex macro instruction to format
dynamic calls based on the information provided in the macro instruction.

 BEGSR @CALLS;
 EXSR @SETPM;
 MONITOR;
 SELECT;
 WHEN CALLPM = 'PLIST1';
 CALLP WithParms(p$gate: p$catg: p$mode: p$rtn);
 OTHER;
 CALLP NoParms();
 ENDSL;
 ON-ERROR;
 P$ERR = 'MIS0012';
 ENDMON;
 EXSR @RETPM;
 ENDSR;

Page 13

A display of the soft coded command keys (SCF) for a program shows entries for internal macro
instructions, including one formatted for the @CALLS subroutine.

SCROYA1 SC0020RP iSoftwerks Incorporated SYSNAME 4/02/10
SCROY 634042 SOFT FUNCTION EDITOR SC0020S1 08:12:45

 APPLICATION: SC0320RP PANEL: AUTHORITY LEVEL: 000

 Key ID Macro Function, program call or command Function text
 F21 &CALL QUSCMDLN Command line
 F23 MOREOPTS More options
 F24 MOREKEYS More keys
 F3 EXIT Exit
 F4 PROMPT Prompt
 F5 RESET Refresh
 F9 CALL SC0335RP PLIST1 A Add item

 +
 F3=Exit

FIG. 1

An Add item request has been entered for the application SC0335RP. The macro has been coded to
instruct the requesting program to call the program using the parameter list; PLIST1.

 F6 CALL SC0335RP PLIST1 A Add item
 | | | | | |
 | | | | | |_Text
 | | | | |___Action code
 | | | |________________________________Parameter list
 | | |__Program
 | |___Op code
 |__Function key

The request to call SC0335RP has been coded to signal the requesting application to use the
parameter list, PLIST1, to invoke the program.

Page 14

Soft Code Support Procedures

The SOFTCODE service program contains a number of procedures to manage the maintenance and
functionality of Soft Code application development. The procedures listed on this page show the
range of functions defined within the service program.

SOFTCODE Service Program Exports

CHECKDEFHEADER
CLEARDEFHDR
CLOSEDEFHEADER
DELETEDEFHDR
FINDDEFHDR
GETDEFINITION
GETNEWTCODE
INSERTDEFHDR
NEXTDEFHDR
SETDEFCODE
SETDEFDESC
SETDEFINECURSOR
SETDEFNAME
UPDATEDEFHDR
ADDFUNCTION
CHECKFUNCDATA
CLEARFUNCREC
CLOSEFUNCTIONCURSOR
DLTFUNCTION
FUNCTIONFOUND
GETNXTFUNCTION
GETPGMFUNCTION
SETFUNCACTN
SETFUNCCALL
SETFUNCCURSOR
SETFUNCKEYID
SETFUNCLEVEL
SETFUNCPARM
SETFUNCPGMID
SETFUNCPNLID
SETFUNCTEXT
SETPGMMACRO
UPDFUNCTION
CLEARGATEREC
CLOSEGATECURSOR
DELETEGATE
GATEFOUND
GETGATEDATA
GETNEXTGATE
INSERTGATE

SETGATECAT
SETGATECURSOR
SETGATELEVEL
SETGATENAME
UPDATEGATE
ADDOPTION
CHECKOPTNDATA
CLEAROPTNREC
CLOSEOPTIONCURSOR
DLTOPTION
GETNXTOPTION
GETPGMOPTION
OPTIONFOUND
SETOPTIONID
SETOPTIONLVL
SETOPTMACRO
SETOPTNACTN
SETOPTNCALL
SETOPTNCURSOR
SETOPTNPARM
SETOPTNPGMID
SETOPTNPNLID
SETOPTNTEXT
UPDOPTION
CHECKTABLEENTRY
CLEARTABCODE
CLOSEDETAILCURSOR
DELETEDETAIL
DELETETABCODE
DETAILENTRIES
FINDTABCODE
GETTABABBR
GETTABCODE
GETTABDATA
GETTABDESC
INSERTTABCODE
NEXTTABCODE
SETCODABBR
SETCODDESC
SETDETAILCURSOR

SETTABCODE
SETTABLEID
UPDATETABCODE
ACTIVATEUSER
CHECKUSERCTL
CHECKUSERDATA
CLEARUSERREC
CLEARUSRCTL
CLOSEUSERCURSOR
CLOSEUSRCTLCSR
DELETEUSER
DELETEUSRCTL
DLTALLUSRCTL
EXPIREUSER
GETNEXTUSER
GETNEXTUSRCTL
GETUSERDATA
GETUSRCTL
INSERTUSER
INSERTUSRCTL
SETSUBSTITUTE
SETUSERCAT
SETUSERCTL
SETUSERCURSOR
SETUSEREDTE
SETUSEREMAIL
SETUSERLEVEL
SETUSERNAME
SETUSERXDTE
SETUSRCTLCSR
UPDATEUSER
UPDATEUSRCTL
USERFOUND
USRCTLFOUND
CHECKOBJECT
DISPLAYKEYS
DISPLAYOPTIONS
GETFUNCTION
GETKEYTEXT
GETOPTION
GETOPTTEXT
SQLERROR

Page 15

Defining a function key

A single module is required for the SCF is FUNCTIONKEYS a procedure designed to load
mnemonic variables with the hex code pattern for function keys. This provides a straight forward
method of command function coding without the use of indicators. It also has the added advantage
of easily interpreted code.

1) Define the key structure with the externally defined file SCKEYSPF
2) Define the AID byte for the last key pressed using the data structure DSPDS

**
FSC0190DF CF E WORKSTN
F SFILE(SC0190S1:RRNSI)
F INFDS(DSPDS)
 *===

D SC0190RP PI
D p$usrp 10a Const Options(*nopass)

D FunctionKey E DS EXTNAME(SCKEYSPF) qualified
D PGMDS ESDS EXTNAME(SCPSTSPF)
D DSPDS E DS EXTNAME(SCDSPFPF)
D MACDS E DS EXTNAME(SCFUNCPF) INZ
D OPTDS E DS EXTNAME(SCOPTNPF) INZ
D FUNCT E DS EXTNAME(SCMACRPF) INZ

3) Retrieve the hex definition of the keys using the SOFTCODE module FUNCTIONKEYS.
4) Invoke the SOFTCODE procedure GETFUNCTION to return the macro instruction.
5) Execute the function returned.

 FunctionKey = FunctionKeys();

 fkeyds = KeyPressed;
 funct = *BLANKS;
 fpgmid = PRGNAM;
 fpnlid = FMTNAM;
 fmacro = *BLANKS;
 MONITOR;
 GetFunction(fpgmid:fpnlid:fkeyds:fkeyid:fmacro:authl);
 ON-ERROR;
 msgid = 'MIS0003';
 EXSR @GetMsg;
 ENDMON;

Page 16

At its simplest, the GETFUNCTION is performing a look-up to determine what function is
associated with the key pressed, then having determined that, returns the function macro data to the
requesting program.

Select;
When KeyPressed = FunctionKey.ENTER;

 Exsr @ENTER;
When KeyPressed = FunctionKey.ROLLUP;

 Exsr @LOAD;
When KeyPressed = FunctionKey.ROLLDN;

 Exsr @DOWN;
When SUBOP = 'CALL';

 Exsr @CALLS;
When FUNCT = 'EXIT';

 Quit();
When FUNCT = 'RESET';

 Exsr @RESET;
When FUNCT = 'MORE';

 DisplayKeys(cmdkey: z$key1: z$key2: M);
When FUNCT = 'MOREOPT';

 DisplayOptions(option: z$opt1: z$opt2: O);
 Endsl;

An in-line case structure usually follows the GETFUNCTION. The case structure may be looking
for a specific function, or a number of different functions. In this example the variable,
KEYPRESSED is compared against specific function keys, ENTER (qualified notation,
FUNCTIONKEY.ENTER), but the other program actions are defined by the function returned by
SOFTCODE process.

Page 17

Soft coded Authorization Levels

The soft function database has been instructed to include a Function Authorization Level (FAL).
The FAL code field coincides with the generic security system authorization level, a three-digit
(zero decimal), code field.

The authorization level is an added command parameter for the Edit Command Key command,
EDTCMDKEY, and to the program options command, EDTPGMOPT (Edit Program Options). The
default in both commands is an authorization level of zero (000).

 Edit Panel Keys (EDTPNLKEY)

 Type choices, press Enter.

 Program identification > SC0320RP Name, *EDITOR, *PLXEDT
 Panel identification *BLANK Name, *ALL, *BLANK
 Authority level 000 Number, 000

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

FIG. 2

Page 18

The editor displays the application name, the panel name and the authorization level. The editor
will allow changes to the function key, macro or text, but not to the authorization level. The panel
displayed shows only application entries that correspond to the command parameters, program,
panel, and any functions at the designated FAL.

SCROYA1 SC0020RP iSoftwerks Incorporated SYSNAME 4/02/10
SCROY 634042 SOFT FUNCTION EDITOR SC0020S1 08:36:57

 APPLICATION: SC0320RP PANEL: AUTHORITY LEVEL: 000

 Key ID Macro Function, program call or command Function text
 F21 &CALL QUSCMDLN Command line
 F23 MOREOPTS More options
 F24 MOREKEYS More keys
 F3 EXIT Exit
 F4 PROMPT Prompt
 F5 RESET Refresh
 F9 CALL SC0335RP PLIST1 A Add item

 +
 F3=Exit

Fig. 3

Page 19

The parameter lists for the SCF/SCP processor programs include the FAL as a parameter. For
example:

 D GetFunction PR
 D pgmnam 10
 D pnlnam 10
 D keyDS 1
 D keyID 10
 D function 45
 D level 3

 BEGSR @EditKeyPressed ;
 fkeyds = KeyPressed ;
 funct = *BLANKS ;
 fpgmid = PRGNAM ;
 fpnlid = UpperCase(z$mode:%size(z$mode)) ;
 fmacro = *BLANKS ;
 MONITOR ;
 GetFunction(fpgmid:fpnlid:fkeyds:fkeyid:fmacro:authl) ;
 ON-ERROR ;
 MessageString ='Error occurred editing function key' ;
 DisplayMessage(MessageString) ;
 ENDMON ;
 FUNCT = FMACRO ;
 ENDSR

The authorization level should be set to 999 if the program does not use FAL sensitive displays.
However if an application is designed to present command keys to a certain type of user, or
different levels of functions for supervisory personnel, then the authority level parm can be used in
conjunction with the security checker program to prevent users from accessing command keys, or
program options they are not authorized to perform.

 D CheckAuthority PR
 D CkUsr 10
 D CkGate 10
 D CkCat 3S 0
 D CkPass 1
 D CkLvl 3

//* The security checking program tests whether the user is allowed
CheckAuthority(USER:PRGNAM:CATEG:PASSC:AUTHL);
IF PASSC <> 'P';
 QUIT();
ENDIF;

Page 20

If the security program has detected a fault, the security monitory screen presents a pop-up display
with the gate ID, program ID and the pass code. This display does not use a display file but the
IBM supplied long-text API. It will appear for interactive programs but does not attempt to issue a
message display in the batch mode.

Security monitor example

SOFTMENU Softcode Services Menu
 System: SYSNAME
Select one of the following:

..
: . Security SC0460RM Error . :
: X-Gate record not on file. Contact Information Systems to have the :
: gate SC0320RP installed. :
: :
: :
: :
: :
: Bottom :
: F12=Cancel :
: :
:..:
 13. Restore save file from IFS
 14. Save save file to IFS
 15. Display softcode documentation

Selection or command
===>
F3=Exit F4=Prompt F5=Workbench F9=Retrieve F12=Cancel
(C) iSoftwerks, Incorporated 2010

Fig.4

Once the authorization level has been established, the program user will only see those function
keys for the established authorization level, or lower. Soft functions defined for the application with
a higher authorization level will be omitted from the command key, and option text. In addition,
even if the function or option is selected, the authority level will prevent an unauthorized user from
executing the function.

Page 21

WRKPNLKEY – Work with panel key

The command, WRKPNLKEY, provides an easy maintenance mechanism for viewing, or editing a
program’s function keys. It lists all program panels defined to the soft function editor and allows
the user to work with an entire panel, or a single panel entry.

 SCROYA1 SC0300RP iSoftwerks Incorporated BLUGRND 4/02/10
 SCROY 634042 Work with function keys SC0300C2 08:52:24

 Type in option, press enter. Program.: SC0320RP Panel...: *BLANK
 2=Edit 4=Delete 9=Edit Panel

 Op Key Panel Macro Act Text Lvl
 F21 &CALL QUSCMDLN Command line 000
 F23 MOREOPTS More options 000
 F24 MOREKEYS More keys 000
 F3 EXIT Exit 000
 F4 PROMPT Prompt 000
 F5 RESET Refresh 000
 F9 CALL SC0335RP PLIST1 A Add item 000

 Bottom
 F3=Exit F5=Refresh

 Copyright (c) iSoftwerks, Inc.

Fig. 5

Page 22

WRKPNLOPT – Work with panel options

The command, WRKPNLOPT, is designed to allow the maintenance of a group of panel options, or
individual program options.

SCROYA1 SC0310RP iSoftwerks Incorporated SYSNAME 4/02/10
SCROY 634042 Work with panel options SC0310C2 08:54:22

 Type in option, press enter. Program.: SC0320RP Panel...: *BLANK
 2=Edit 4=Delete 9=Edit panel

 Op Option Panel Macro Act Text Lvl
 DM &DSPMSG Messages 000
 14 CALL SC0380CL WORKOBJECT C Create 000
 15 PROCESS Activate 000
 17 RESET Reset 000
 19 EXCEPTION Review 000
 2 CALL SC0335RP PLIST1 C Edit 000
 21 CALL SC0345CL WORKSOURCE E Edit source 000
 33 OBSOLETE Obsolete 800
 35 EXTEND Extended 000
 4 CALL SC0335RP PLIST1 D Delete 000
 5 CALL SC0335RP PLIST1 V View 000
 71 CALL SC0370CL WORKSOURCE E STRSDA 000
 More...
 F3=Exit F5=Refresh

Fig. 6

The option to edit a panel invokes and RPG program for the Command Processing Program (CPP).
The program and display work in similar fashion to the EDTPNLKEY CPP. See the section titled
Editing Macro Instructions for a more detailed explanation of the soft function editor processes.

Page 23

Editing an Option

The option to edit a single entry calls a subprogram to allow the user to change the option macro
information, or the option text, or the security level on the program option.

 SCROYA1 SC0310RP iSoftwerks Incorporated SYSNAME 4/02/10
 SCROY 634042 Work with panel options SC0310C2 08:57:41

 Type ..
 : SC0315RP Work with program option SC031501 :
 : Change :
 : Program ID.......: SC0320RP Panel ID.........: :
 Op Op : Function ID......: 33 Authority level..: 800 :
 DM : Panel text.......: Obsolete :
 14 : Macro instruction: OBSOLETE :
 15 : Format &<op><---Pgm--><--Plist-><----undefined---->A :
 17 : :
 19 : :
 2 : :
 21 : F10=Enter F12=Previous :
 2 33 : :
 35 : :
 4 : :
 5 :..:
 71 CALL SC0370CL WORKSOURCE E STRSDA 000
 More...
 F3=Exit F5=Refresh

Fig. 7

Page 24

WRKSFTUSR – Work with Soft Code User

The command, WRKSFTUSR, provides a maintenance facility to define those users authorized to
use soft code functions. The display lists the users defined to the system.

SCROYA1 SC0190RP iSoftwerks Incorporated SYSNAME 4/02/10
SCROY 634042 Work With Softcode Users SC0190C2 09:02:26

 Type in option, press enter. Position to:
 2=Edit 5=View 8=Controls

Op User Status Eff Date Exp Date Email
 SCROY *active 1/01/00 99/99/99 scroy@gate.net

 Bottom
 F1=Help F3=Exit F5=Refresh
 F9=Add user
Copyright (c) iSoftwerks, Inc.

Fig. 8

User records are stored in the file, SCUSRSPF. The individual control entries are contained in the
database file, SCUSRCPF.

Page 25

User Controls

The user controls option provides a method of assigning the user an authority level within the
categories defined by the soft code application system.

A user may be assigned different levels of authority within the various categories defined in the
system. A user may be an administrator in Customer Service, but allowed Special Operations rights
in the Accounting area.

 SCROYA1 SC0290RP iSoftwerks Incorporated SYSNAME 4/02/10
 SCROY 634042 Work with controls for SCROY SC0290C2 09:03:43

 Options: 1=Add 2=Edit 4=Delete

 Op Cat Category Description Lvl Level Description
 0 000
 100 Customer Relations 500 Operational Security
 200 Financial Services 800 System Level Security
 400 Inventory 800 System Level Security
 450 Purchasing 800 System Level Security
 500 Information Systems 700 Adminstrative Security
 600 Administration 400 Manager Level 2 Security
 700 Executive 300 Manager Level 1 Security

 Bottom

 F3=Exit F5=Refresh

 Copyright (c) iSoftwerks, Inc.

Fig. 9

Individual programs may be assigned to a category. This is how a group of users may share a
common application program and are assigned functions (keys) and options based on the authority
level that they are assigned within the application category.

Page 26

Soft Code Tables

There are two tables key to the soft code operations, the category table and the authority level table.
Additional tables may be defined as required, as the number of tables defined is not limited.

SCROYA1 SC0230RP iSoftwerks Incorporated BLUGRND 4/02/10
SCROY 634042 Work with Definitions SC0230C2 09:05:04

Options: 1=New definition 2=Edit 4=Delete
 8=Details

 Op Definition Description Table

 CATEGORY Application Category Table 10
 LEVEL Authorization Level Table 5

 Bottom

 F3=Exit

Copyright (c) iSoftwerks, Inc.

Fig. 10

Page 27

Category table entries

Category table entries are used to define application categories. The current category list defines
the following application areas:

SCROYA1 SC0210RP iSoftwerks Incorporated BLUGRND 4/02/10
SCROY 634042 Work With Table 10 SC0210C2 09:06:20

Options: 1=Add 2=Edit 4=Delete

Op Cde Description Abbr Chg Usr Chg date Chg time
 4/02/10
 100 Customer Relations CS SCROY 3/27/10 9:20:04
 200 Financial Services FS SCROY 3/27/10 9:20:04
 300 Accounting AC SCROY 3/27/10 9:20:04
 400 Inventory IN SCROY 3/27/10 9:20:04
 450 Purchasing PO SCROY 3/27/10 9:20:04
 500 Information Systems IN SCROY 3/27/10 9:20:04
 600 Administration AD SCROY 3/27/10 9:20:04
 700 Executive EX SCROY 3/27/10 9:20:04

 Bottom

 F3=Exit F5=Refresh

Copyright (c) iSoftwerks, Inc.

Fig. 11

These text descriptions and abbreviations may be changed without any impact on soft code
functions. Deleting category codes may lead to a problem with any program that has been assigned
that specific category.

Page 28

Authority Level Entries

Authority levels are defined by this table. The authority level text description and abbreviation may
be changed at any time without any impact on the operation of the soft code function editor.
However removing code entries or adding entries may affect the functions and/or options that soft
coded applications present to the various users.

SCROYA1 SC0210RP iSoftwerks Incorporated SYSNAME 4/02/10
SCROY 634042 Work With Table 5 SC0210C2 09:07:46

Options: 1=Add 2=Edit 4=Delete

Op Cde Description Abbr Chg Usr Chg date Chg time
 4/02/10
 No Authority Required NA SCROY 3/30/10 7:12:14
 100 Entry Level security EL SCROY 3/27/10 9:20:04
 200 Supervisor security SP SCROY 3/27/10 9:20:04
 300 Manager Level 1 Security M1 SCROY 3/27/10 9:20:04
 400 Manager Level 2 Security M2 SCROY 3/27/10 9:20:04
 500 Operational Security OP SCROY 3/27/10 9:20:04
 600 Executive Level Security EX SCROY 3/27/10 9:20:04
 700 Adminstrative Security AD SCROY 3/27/10 9:20:04
 800 System Level Security SL SCROY 3/27/10 9:20:04

 Bottom

 F3=Exit F5=Refresh

Copyright (c) iSoftwerks, Inc.

Fig. 12

Page 29

Soft Code Program Example

The following is an actual program designed with the Soft Code functions in place. The program is
a typical 5250 sub-file display program—except it doesn’t contain a database file. And, the
function keys are not defined in the display. And the program options are contained in a separate
database file. And the prompt is a text-driven, dynamically sized window. And the help process is
external to the program—other than those oddities it is a typical interactive ILE program.

The program SC0190RP allows a user to view and update database information. It invokes multiple
subprograms, some with the options on the panel, some with function keys. It provides help, even
though it doesn’t appear to have a help function, (the help is actually managed by the function key
editor). And, even with the identification block the program totals less than 515 lines of source.

 /TITLE ** WORK WITH SOFTCODE USERS **
 H DEBUG(*YES)
 H OPTION(*SRCSTMT : *NODEBUGIO) DFTACTGRP(*NO) ACTGRP('QILE')
 H BNDDIR('SC0000_BD':'QC2LE')
 **
 * Program Name - SC0190RP *
 * *
 * Function - This program was designed to allow a user to *
 * manage the softcode application users *
 * *
 * Programmer - Steve Croy iSoftwerks, Inc. *
 **
 **
 * Modification log *
 * *
 * Date Programmer Description *
 * *
 **
 FSC0190DF CF E WORKSTN
 F SFILE(SC0190S1:RRNSI)
 F INFDS(DSPDS)
 *==
 D FunctionKey E DS EXTNAME(SCKEYSPF) qualified Function keys
 D PGMDS ESDS EXTNAME(SCPSTSPF) Pgm status map
 D DSPDS E DS EXTNAME(SCDSPFPF) Display INFDS
 D MACDS E DS EXTNAME(SCFUNCPF) INZ Key map
 D OPTDS E DS EXTNAME(SCOPTNPF) INZ Option map
 D FUNCT E DS EXTNAME(SCMACRPF) INZ Macro map
 D USERPR E DS extname(SCUSRSPF)
 D BEFORE E DS extname(SCUSRSPF) prefix(b_) inz
 D AFTER E DS extname(SCUSRSPF) prefix(a_) inz

 D SC0190RP PR
 D p$find 10 Const options(*nopass)

 D SC0190RP PI
 D p$find 10 Const options(*nopass)

 *-- Common prototypes
 /copy qrpglesrc,sc0000_pr
 *---
 d indPtr s * inz(%addr(*in))

 * define named indicators
 d indicators ds 99 based(indPtr)
 d ScreenChange n overlay(indicators : 22)
 d SflControl n overlay(indicators : 50)
 d SflDisplay n overlay(indicators : 51)

Page 30

 d SflInitialize n overlay(indicators : 52)
 d SflClear n overlay(indicators : 53)
 d SflEnd n overlay(indicators : 54)
 d SflDelete n overlay(indicators : 55)
 d SflNxtChange n overlay(indicators : 58)
 d SflMSGQdisplay...
 d n overlay(indicators : 59)

 D WithParms PR extpgm(SUBPGM)
 D p$user 10

 D WithParms2 PR extpgm(SUBPGM)
 D p$user 10
 D p$mode 1

 D NoParms PR extpgm(SUBPGM)

 D Quit pr
 D Exit pr extproc('exit')
 D 3u 0 value

 D DS
 D DEC 4B 0
 D BIN 1 OVERLAY(DEC:2)
 * Default cursor position
 D #DFPOS DS INZ
 D #DFROW 2 0 INZ(4)
 D #DFCOL 3 0 INZ(61)
 *---
 * Define constants
 *---
 D #MSGF C CONST('SCMSSGF')
 D #SAME C CONST('*SAME')
 D #TITLE C CONST('Work With Softcode Users')
 *---
 * START of work fields
 *---
 D MessageToDisplay...
 D S n
 D ADJ S 2 0
 D AUTHL S 3
 D CATEG S 3S 0 inz(500)
 D CMDKEY S 720
 D DTAFLD S 256
 D EOFIND S 1 INZ('0')
 D FKEYDS S 1
 D INDLR S 1
 D M S 3S 0
 D MSG S 80
 D MSGDTA S 132
 D MSGF S 10
 D MSGPGM S 10
 D MSGRLQ S 5
 D O S 3S 0
 D OPTION S 720
 D p$catg S 3s 0
 D p$mode S 1
 D PNLNAM S 10 INZ('PROMPT')
 D prmdata S 256
 D PARM1 S 9 0
 D PARM2 S 256
 D FieldName s 10
 D PASSC S 1
 D RCDNBR S 5 0 INZ(1)
 D RRNSI S 4 0
 D SAVRRN S 4 0
 D ScanRequested...
 D S n inz(*ON)
 D MoreRecordsRemain...
 D S n inz(*OFF)
 D NoMoreRecords...

Page 31

 D S n inz(*OFF)
 D ErrorOccurred...
 D S n inz(*OFF)
 D SFLLOD S 4 0
 D SFLMAX S 4 0 INZ(12)
 D SFLPOS S 4 0
 D SFLRCN S 4 0
 D W$SCAN S LIKE(Z$SCAN)
 d P$GATE s 10
 d P$USER s 10
 d P$MOD s 1
 d P$ERR s 7
 d P$RTN s 7
 d orderBy s 50a inz('order by msusrp')
 d selectOnly s 50a
 *---
 * END of work fields
 *---
 /free
 z$seq1 = #TITLE;
 z$seq1 = CenterTxt(z$seq1:%size(z$seq1));
 //* The security checking program tests whether the user is allowed
 CheckAuthority(USER:PRGNAM:CATEG:PASSC:AUTHL);
 IF PASSC <> 'P';
 QUIT();
 ENDIF;
 FunctionKey = FunctionKeys();
 MSGID = 'MIS0001';
 EXSR @GetMsg;
 IF %parms = 1;
 z$scan = p$find;
 ELSE;
 z$scan = *blanks;
 ENDIF;
 EXSR @reset;

 DOU FUNCT = 'EXIT';
 IF MessageToDisplay;
 SflMSGQdisplay = *ON;
 ELSE;
 SflMSGQdisplay = *OFF;
 ENDIF;
 // write subfile message queue
 WRITE SC0190C2;

 IF ScanRequested;
 #ROW = #DFROW;
 #COL = #DFCOL;
 ENDIF;
 // Display subfile, test for EOJ, and function requested.
 rrnsi = 0;
 sflControl = *ON;
 IF sflrcn > 0;
 sflDisplay = *ON;
 ENDIF;
 WRITE SC019001;
 EXFMT SC0190C1;
 sflControl = *OFF;
 sflDisplay = *OFF;
 DEC = 0;
 EVALR BIN = ROW;
 #ROW = DEC;
 DEC = 0;
 EVALR BIN = COL;
 #COL = DEC;

 IF MessageToDisplay;
 RmvMessage(prgnam);
 MessageToDisplay = *OFF;
 ENDIF;
 // Get the program function based on the key detected.

Page 32

 EXSR @EditKeyPressed;
 SELECT;
 WHEN KeyPressed = FunctionKey.ENTER;
 EXSR @ENTER;
 WHEN KeyPressed = FunctionKey.ROLLUP;
 EXSR @LOAD;
 WHEN KeyPressed = FunctionKey.ROLLDN;
 EXSR @DOWN;
 WHEN SUBOP = 'CALL';
 EXSR @CALLS;
 WHEN FUNCT = 'EXIT';
 QUIT();
 WHEN FUNCT = 'RESET';
 EXSR @RESET;
 WHEN FUNCT = 'PROMPT';
 EXSR @PROMPT;
 WHEN FUNCT = 'MORE';
 DisplayKeys(cmdkey: z$key1: z$key2: M);
 WHEN FUNCT = 'MOREOPT';
 DisplayOptions(option: z$opt1: z$opt2: O);
 ENDSL;
 FUNCT = *BLANKS;
 ENDDO;
 //*==
 //* Process ENTER key
 //*==
 BEGSR @ENTER;
 IF Z$RRN1 > 0;
 DOU %eof(SC0190DF);
 READC SC0190S1;
 IF NOT %eof(SC0190DF);
 IF Z$OPT <> *BLANK;
 z$opt = %triml(z$opt);
 EXSR @EditOptions;
 IF SUBOP = 'CALL';
 EXSR @CALLS;
 ENDIF;
 z$opt = *BLANK;
 IF before <> after;
 SELECT;
 WHEN subact = 'C';
 z$stat = '*changed';
 USERPR = after;
 WHEN subact = 'D';
 z$stat = '*deleted';
 *IN30 = *ON;
 ENDSL;
 ENDIF;
 z$rrn2 = z$rrn1;
 UPDATE SC0190S1;
 *IN30 = *OFF;
 ENDIF;
 funct = *BLANKS;
 ENDIF;
 ENDDO;
 ENDIF;
 EXSR @READ;
 ENDSR;
 //*==
 //* Read the scan record format to determine if there is a change.
 //*==
 BEGSR @READ;
 ScanRequested = *OFF;
 READ SC019001;
 IF ScreenChange; // Change indicator on
 ScanRequested = *ON;
 EXSR @RESET;
 ENDIF;
 z$scan = *BLANKS;
 ENDSR;
 //*==

Page 33

 //* Prompt for a scan value
 //*==
 BEGSR @prompt;
 Prompter(PrgNam: PnlNam: Prmdata);
 IF Prmdata <> *blanks;
 Z$SCAN = PRMDATA;
 ScanRequested = *ON;
 EXSR @RESET;
 Z$SCAN = *BLANKS;
 ENDIF;
 ENDSR;
 //*==
 //* Initialize subfile, and reposition file for subfile load
 //*==
 BEGSR @reset;
 rrnsi = 1;
 rcdnbr = 1;
 sflrcn = 0;
 sflpos = 0;
 SflInitialize = *ON;
 WRITE SC0190C1;
 SflInitialize = *OFF;
 SflEnd = *OFF;
 selectOnly = %trim(z$scan);
 CloseUserCursor();
 ClearUserRec();
 SetUserCursor(orderby: selectOnly);
 EXSR @LOAD;
 EXSR @GetCmdKeys;
 EXSR @GetOptions;
 ENDSR;
 //*==
 //* Subroutine to process rolldown key
 //*==
 BEGSR @DOWN;
 Z$RRN2 = SFLPOS - SFLMAX;
 SFLPOS = SFLPOS - SFLMAX;
 IF SFLPOS < 1;
 SFLPOS = 1;
 ENDIF;
 IF Z$RRN2 < 1;
 Z$RRN2 = 1;
 MSGID = 'MIS0006';
 EXSR @GetMsg;
 ENDIF;
 ENDSR;
 //*==
 //* Set lower limits using search argument, load subfile from I/O
 //* manager until end of file, or max nbr of records loaded
 //*==
 BEGSR @LOAD;
 sfllod = 0;
 savrrn = z$rrn2;
 SflEnd = *OFF;
 NoMoreRecords = *OFF;
 DOU NoMoreRecords or sfllod >= sflmax;
 MoreRecordsRemain = GetNextUser();
 IF MoreRecordsRemain;
 USERPR = GetUserData();
 sflrcn = sflrcn + 1;
 sfllod = sfllod + 1;
 RRNSI = SFLRCN;
 Z$RRN1 =SFLRCN;
 Z$DBRN = 0;
 z$opt = *BLANKS;
 IF msstat = '1';
 z$stat = '*active';
 ELSE;
 z$stat = '*expired';
 ENDIF;
 IF msxdte = 99999999;

Page 34

 z$xdte = 999999;
 ELSE;
 z$xdte = CvtToDate6('*MDY':msxdte:'*ISO');
 ENDIF;
 IF msedte = 00000000;
 z$efdt = 0;
 ELSE;
 z$efdt = CvtToDate6('*MDY':msedte:'*ISO');
 ENDIF;
 z$mail = msmail;
 WRITE SC0190S1;
 ELSE ;
 Sflend = *ON;
 NoMoreRecords = *ON;
 ENDIF;
 ENDDO;
 sflpos = sflpos + sflmax;
 IF sfllod > 0;
 z$rrn2 = (sflrcn - sfllod) + 1;
 ELSE;
 z$rrn2 = z$rrn2 + SFLPOS;
 ENDIF;
 IF z$rrn2 > sflrcn;
 z$rrn2 = sflrcn;
 sflpos = sflpos - sflmax;
 msgid = 'MIS0007';
 EXSR @GetMsg;
 ENDIF;
 ENDSR;
 //*===
 //* Get message text from message file and turn on message flag
 //*===
 BEGSR @getmsg;
 msgdta = *BLANKS;
 msg = *BLANKS;
 msgf = #MSGF;
 MONITOR;
 RtvMessage(msgid:msgf:msgdta:msg);
 ON-ERROR;
 MessageToDisplay = *ON;
 ENDMON;
 msgtxt = msg;
 EXSR @SendMessage;
 ENDSR;
 //*===
 //* Subroutine to send messages to program message queue
 //*===
 BEGSR @SendMessage;
 msgdta = msgtxt;
 msgpgm = PRGNAM;
 msgrlq = #SAME;
 msgf = #MSGF;
 SndMessage(msgid:msgf:msgdta:msgrlq:msgpgm);
 MessageToDisplay = *ON;
 ENDSR;
 //*===
 //* Subroutine to edit command key functions
 //* The program name, panel ID and the key are used to retrieve the
 //* function macro. If the call fails, default to EXIT.
 //*===
 BEGSR @EditKeyPressed;
 fkeyds = KeyPressed;
 funct = *BLANKS;
 fpgmid = PRGNAM;
 fpnlid = FMTNAM;
 fmacro = *BLANKS;
 MONITOR;
 GetFunction(fpgmid:fpnlid:fkeyds:fkeyid:fmacro:authl);
 ON-ERROR;
 msgid = 'MIS0003';
 EXSR @GetMsg;

Page 35

 ENDMON;
 FUNCT = FMACRO;
 ENDSR;
 //*===
 // * Subroutine to Get the command keys for the application
 //*===
 BEGSR @GetCmdKeys;
 fpgmid = PRGNAM;
 fpnlid = FMTNAM;
 CMDKEY = *BLANKS;
 MONITOR;
 GetKeyText(fpgmid:fpnlid:cmdkey:authl);
 ON-ERROR;
 msgid = 'MIS0005';
 EXSR @GetMsg;
 ENDMON;
 m=0;
 DisplayKeys(cmdkey: z$key1: z$key2: M);
 ENDSR;
 //*===
 //* Subroutine to edit program option functions
 //*===
 BEGSR @EditOptions;
 FUNCT = *BLANKS;
 opgmid = PRGNAM;
 OPTNID = Z$OPT;
 opnlid = FMTNAM;
 OMACRO = *BLANKS;
 MONITOR;
 GetOption(opgmid: opnlid: optnid: omacro: authl);
 ON-ERROR;
 MSGID = 'MIS0002';
 EXSR @GetMsg;
 OMACRO = *BLANKS;
 ENDMON;
 FUNCT = OMACRO;
 ENDSR;
 //*===
 //* Subroutine to get program options for the application
 // *===
 BEGSR @GetOptions;
 OPTION = *BLANKS;
 opnlid = FMTNAM;
 MONITOR;
 GetOptText(prgnam: opnlid: option: authl);
 ON-ERROR;
 MSGID = 'MIS0004';
 EXSR @GetMsg;
 ENDMON;
 o = 0;
 DisplayOptions(option: z$opt1: z$opt2: O);
 ENDSR;
 //*==
 //* This subroutine allows program calls using pre-defined PLISTs
 //*==
 BEGSR @CALLS;
 EXSR @SETPM;
 MONITOR;
 SELECT;
 WHEN CALLPM = 'PLIST1';
 CALLP WithParms(p$USER);
 WHEN CALLPM = 'PLIST2';
 CALLP WithParms2(p$USER:p$mode);
 OTHER;
 CALLP NoParms();
 ENDSL;
 ON-ERROR;
 P$ERR = 'MIS0012';
 ENDMON;
 EXSR @RETPM;
 ENDSR;

Page 36

 //*==
 //* This subroutine sets values for pre-defined PLISTs
 //*==
 BEGSR @SETPM;
 IF UserFound(msusrp);
 before = GetUserData();
 ELSE;
 CLEAR before;
 ENDIF;
 p$user = msusrp;
 p$mode = subact;
 P$RTN = *BLANK;
 ENDSR;
 //*==
 //* This subroutine determines actions based on returned parms
 //*==
 BEGSR @retpm;
 IF UserFound(msusrp);
 after = GetUserData();
 ELSE;
 CLEAR after;
 ENDIF;
 IF p$err<>*BLANKS;
 msgid = p$err;
 EXSR @GetMsg;
 MessageToDisplay = *ON;
 ENDIF;
 ENDSR;
 /end-free
 P Quit b
 /free
 ErrorOccurred = CloseUserCursor() ;
 *inlr = *on ;
 exit(0) ;
 /end-free
 P Quit e

	Introduction
	Design Overview
	SOFT CODED FUNCTIONS
	Soft coded functions: Intro
	SCF/SCP Commands

	SCF/SCP Database Files
	Macro Instruction Format
	Complex Macro Instruction

	Editing Macro Instructions
	Soft Code Support Procedures
	SOFTCODE Service Program Exports
	Defining a function key

	Soft coded Authorization Levels
	Security monitor example

	WRKPNLKEY – Work with panel key
	WRKPNLOPT – Work with panel options
	Editing an Option
	WRKSFTUSR – Work with Soft Code User
	User Controls

	Soft Code Tables
	Category table entries
	Authority Level Entries

	Soft Code Program Example

