O {Sattwarks. ine— > )
The REXX Queue exists as a part of IBM’s support for the REXX environment on the AS400/iSeries/Power
Systems OS. The REXX external data queue provides a method to hold temporary data which REXX or a HLL

program may use. The data on the queue is accessible by and visible to users as lines, or as buffers. Each line may
contain up to 32,767 characters. Individual characters have no special meaning to REXX, so special characters or

attributes have no effect on REXX.

The REXX data queue comes into existence when a job is started. There is no special command or consideration
for the creation of the queue. It simply begins as a part of the job initiation. The queue persists until the end of the
job. Data may be placed in the queue by REXX or user programs in an arbitrary manner. All programs running
under the same job have access to the queue so it can be used to provide a data exchange method between

programs, offering high-speed inter-program communications.

Here is a fixed format example of code to push data to the REXX Queue. The subroutine in Fig.1 is designed to put
an entry on the REXX queue. The ‘1’ in the flag parameter designates that the entry will be placed in the queue for
LIFO processing. A zero in conjunction with the ‘A’ would tell the API the stack will be processed in FIFO (First-

In-First-Out) sequence.

* This is the data structure necessary for the binary Ffields

* used as parameters on the QREXQ API.

D BFLDS DS

D BUFLEN 9B 0O
D FLAG 4B 0
D RCODE 4B O

B

C @PUSH BEGSR

C MOVEL COMAND

C MOVE "A

C EVAL BUFLEN = 264
C EVAL FLAG = 1

C EVAL RCODE = *ZERO
*

C CALL "QREXQ"

C PARM

C PARM

C PARM

C PARM

C PARM

C ENDSR

BUF
FUNT

FUNT
BUF
BUFLEN
FLAG
RCODE

*Lifo

Fig. 1




Here is a fixed format example of code to pop information from the REXX Queue. The code retrieves the last entry
from the stack and returns the data to the program via the buffer (BUF) parameter.

* —

* @POP - GET STACK DATA
* —

@POP BEGSR

C
C EVAL FLAG = O
C EVAL RCODE = O
C MOVE "p* FUNT Pull
C EVAL BUFLEN = 264
C CALL "QREXQ*"
C PARM FUNT
C PARM BUF
C PARM BUFLEN
C PARM FLAG
C PARM RCODE
C MOVEL BUF COMAND
C ENDSR

Fig. 2

In free-format code the call to the system API, QREXQ may be prototyped. (Fig.3)

D
D
D
D
D
D

D
D
D
D
D
D

useRexQue PR extPgm("QREXQ™")
rxQfunct 1
rxBfrval 128
rcBfrLen 9B 0
rxBfrFlg 4B 0
rxRtnCde 4B 0

QBUFFER DS
rxQFunct 1
rxBfrval 128
rxBfrLen 9B O
rxBfrFlg 4B 0
rxRtnCde 4B 0O

Fig. 3

However, the process is the same as in fixed-format. Send an entry to the queue, from the buffer when pushing an

entry on

to the queue and pull the entry from the queue when retrieving the information.




DoU rxRtnCde <> 0O ;
rxBfrLen 128 ;
rxQFunct P ; // Pull an entry from the queue
rxRtnCde 0 ;
rxBfrFlg 0
useRexQue(rxQFunct
rxBfrval
rxBfrLen
rxBfrFlg :
rxRtnCde );
IF rxRtnCde = 0 ;
rowCount = rowCount + 1 ;
%occur(fmtlin) = rowCount; // count of late pulls
fmtLin = rxBfrval ;
ENDIF
ENDDO

Fig.-4

The code in the example (Fig. 4) demonstrates pulling information from the REXX queue. The loop will read all of
the records from the queue, emptying the data queue. Though the queue itself cannot be deleted by a program, the
contents may be emptied using a logic loop such as the one above.

In order to push data to the queue, a loop such as the example below, (Fig. 5) may be coded. This code example is
checking information from a multiple occurrence data structure and pushing the information to the REXX queue.

DoU X > rowCount
IF X <= rowCount
%occur(fmtLin) = x

rxQfunct = "A* ;
rxBfrlen = 128 ;
rxBfrFlg = 1 ;
rxRtnCde = 0 ;
rxBfrval = fmtLin

useRexQue(rxQfunct: rxBfrval:
rxBfrlen: rxBfrFlg: rxRtnCde);

ENDif ;
X=X+ 1
ENDDo

Fig. 5

The REXX queue is a flexible, fast mechanism for storing temporary data, or passing data from program-to-
program within a job stream without resorting to a physical file or parameters. The caveat to remember is that the
REXX queue is a job-related queue. When the job ends, so does the existence of the queue and any data that it
contains.

- SC




