

Generic Message Procedures

By now, most programmers that use API’s have seen the long text (QUILNGTX) API that IBM
has made available to Power Systems application developers. The API is a handy one to put in
the tool box, though just using the API by itself may prove to be somewhat problematic. The
does return an error code data structure, but a simple up-front test might be prudent.

First, it would seem wise to incorporate some test of the job attributes before issuing a display. It
never was a good idea to open a display file in the batch mode. It doesn’t seem much of a better
idea to use the API to display a message in the batch mode.

 H DEBUG(*YES)
 H OPTION(*SRCSTMT : *NODEBUGIO) DFTACTGRP(*NO) ACTGRP('QILE')
 D dspTxtMsg pr 3a
 D msg 65535a varying const options(*varsize)
 D GetJobAtr Pr 1A
 D thisAtr S 1A
 /free
 IF GetJobAtr = 'I';
 IF dspTxtMsg('Enter to continue or F12 to cancel program')='F12';
 dsply 'F12 was pressed.';
 ENDIF;
 ENDIF;
 *INLR = *ON;
 RETURN;
 /end-free

Fortunately, IBM has also provided an API that makes it relatively simple to test whether the
program is operating in a batch mode, or interactive mode. The procedure GetJobAtr returns a
single-byte to describe if the program is interactive or a batch type job. A simple check of the job
attributes can allow the developer to code to use the long-text API if the job is interactive, or to
send a message to a specific user, or job queue, if the application is operating in the batch mode.

The QUSRJOBI API is a part of the function to get the job attribute. In this case, the data format
used for the API is JOBI0100. JOBI0100 provides the job information that denotes whether the
current job is interactive, batch, or a pre-start entry.

 P GetJobAtr B export
 D GetJobAtr PI 1A

 DRtvJobA Pr extpgm('QUSRJOBI')
 D rtv_Data 100a
 D rtv_Length 10i 0 const
 D rtv_Format 8a
 D rtv_Job 26a
 D rtv_IntJob 16a

 D p_Rcvr S 100
 D p_Format S 8 INZ('JOBI0100')
 D p_ThisJob S 26 INZ('*')
 D p_IntJob S 16
 D JobType S 1
 /free
 RtvJoba(p_Rcvr: %len(p_Rcvr): p_Format: p_ThisJob: p_IntJob);
 JobType = %SUBST(p_Rcvr : 61 :1);
 RETURN JobType;
 /end-free

 P GetJobAtr E

It is convenient to know the job type when the need arises to alert someone that there is an error,
or a decision to be made. In the case of this simple test program, a test is made before using the
long-text API. It is dangerous to assume the API would be coded for interactive work. But in the
ILE model, reusable code modules can be purpose-built to be shared across a variety of
applications—common modules may be shared between interactive and batch processes.

The QUSERJOBI information can help the long-text API, at least from the perspective of
making sure it is only invoked in interactive mode. However, using the format, JOBI0100 does
not provide a meaningful response to the program that invoked the API, which could leave the
developer scratching their head, wonder what key the user pressed.

After the text message is presented to the user, it does make sense to interrogate the user action.
The long-text API presentation includes F12 on the display, so it is safe to assume a certain
number of users will react to the message with F12. QUSRJOBI can help with this.

 P dspTxtMsg B
 D dspTxtMsg PI 3a
 D i_msg 65535a varying const options(*varsize)
 D i_Title 27 options(*nopass)

 D QUILNGTX PR ExtPgm('QUILNGTX')
 D text 65535a const options(*varsize)
 D length 10i 0 const
 D msgid 7a const
 D qualmsgf 20a const
 D errorCode 32767a options(*varsize)

 D QUSRJOBI PR ExtPgm('QUSRJOBI')
 D rcvVar 65535a options(*varsize)
 D rcvVarLen 10i 0 const
 D format 8a const
 D qualJob 26a const
 D intJob 16a const
 D errorCode 32767a options(*varsize:*nopass)

 D JOBI0600 ds qualified
 D F12 1n overlay(JOBI0600:104)

 d title s 7a inz(*blank)
 d messageF s 20a inz(*blank)
 d titleString s 27a varying inz(*blank)
 d tx s 3 0
 d ctrString s 27a inz(*blank)
 d thisErr s 16a inz(*blank)
 /free
 title = *blanks;
 messagef = *blanks;
 titleString = %trim(i_Title);
 IF titleString <> *blank and %len(%trim(titleString)) < 27;
 tx = %div(27-%len(titlestring):2) + 1;
 %subst(ctrString:tx) = %trim(titleString);
 ELSE;
 ctrString = titleString;
 ENDIF;
 title=%subst(ctrString:1:7);
 messageF=%subst(ctrString:8:20);
 QUILNGTX(i_msg: %len(i_msg): title: messageF: thisErr);
 QUSRJOBI(JOBI0600: %size(JOBI0600): 'JOBI0600': '*': *blanks);
 if JOBI0600.F12;
 return 'F12';
 else;
 return 'ENT';
 endif;
 /end-free
 P E

By adding the QUSRJOBI API and the JOBI0600 data structure, you can determine if F12 was
pressed (or not). This allows a developer the option of making a decision based on whether a
user wanted to continue the program action, or abandon the program action based on whether
F12 was pressed, or not. Otherwise the API is merely a note to the application user—which is
not necessarily a bad thing, but not as versatile as actually managing the user response. It cannot
remember where I first saw this technique used—I believe in may have been Scott Klement that
had an example of this on a web forum.

There is an additional consideration when using the long-text message API. The job does not
necessarily reset the cancel key. In other words, if the function does not exit the program but
returns to running the job after the message display, the F12 (cancel) key retains the value of ‘1’
after the first time the text box is displayed and interrogating the return will still produce the
‘F12-was pressed’ message, even if the user simply pressed the ENTER key.

D QWCCCJOB PR ExtPgm('QWCCCJOB')
D jobVar 65535a options(*varsize)
D errorCode 16a

In order to reset the value of the cancel key for the job, the system API, QWCCCJOB, can be
invoked. IBM provided this API specifically to reset the job keys. The API has two parameters;
the list of keys to reset (exit, cancel, etc.) and the standard API error structure.

d resetDS ds
d cancelK 10i 0 inz(2)
d 10i 0 inz(1)
d 10i 0 inz(1)
d 1a inz('0')
d 10i 0 inz(2)
d 10i 0 inz(1)
d 1a inz('0')

The data structure shows the cancel key (key ID 2) being set to a value of ‘0’. In free-format
code, the execution of the reset is just a single instruction line.

QWCCCJOB(resetDS:errorDS);

By adding this code to the long-text message procedure, the value of F12 is reset to ‘0’ so the test
of the user response to the message represents the last action for the job key.

Combining the IBM supplied API’s QUILNGTX, QUSRJOBI, and QWCCCJOB into a service
program, or adding the procedures to a common service program, could produce a generic, re-
useable tool for messaging that could easily be incorporated into a CL program or any other ILE
application.

Steve

