

Page | 1

Integer Representation

The use of integer data types in RPG code has increased, not only in procedure

prototypes, but even creeping into the definitions of work fields. The emergence of

integer data types may be generally attributed to two different factors. One major factor,

of course, is the increasing use of interfaces to C, or Java, which necessitate using integer

representations, since neither language supports fixed format decimal representations.

And, the other factor is an increase in the number of system API’s finding their way into

RPG programs, where the use of integers as parameters has been a practice for a long

number of years.

In past releases of OS/400, it was common to represent integer data as 4B 0 fields (4 byte

binary integer). Many of the IBM API manuals still reference a 2-byte, or 4-byte binary

representation, such as this example showing the List Job Log (QMHLJOBL) API

required parameter group.

Table 1

 Required Parameter Group:

1 Qualified user space name Input Char(20)

2 Format name Input Char(8)

3 Message selection information Input Char(*)

4 Size of message selection information Input Binary(4)

5 Format of message selection information Input Char(8)

6 Error code I/O Char(*)

If integers are used in a data structure, programmers should make sure the offset for an

integer is aligned correctly. In general, subfields defined using length notation,

developers can automatically integer or unsigned subfields by specifying the keyword

ALIGN on the data structure. However, the ALIGN keyword is not allowed for a file

information data structure (INFDS) or a program status data structure (PSDS).

2 bytes for 5-digit integer or unsigned subfields

4 bytes for 10-digit integer or unsigned subfields or 4-byte float subfields

8 bytes for 20-digit integer or unsigned subfields

The following RPG D spec example shows typical representations of integer variables, (a

4-byte binary integer).

0001.00 D binint ds

0002.00 D binfield 1 4b 0

0003.00 D bininteger S 10i 0

Page | 2

Typically, an integer, as in either D spec above is analogous to one of the primitive

integer types found in other languages such as C and Java, like the Java variable

definitions of the integer type, illustrated below.

 int scale = 10;

 int maxLabelWidth = 0;

I have no objection to integers used in procedure prototypes, or any other place within an

RPG application, but since I have had to address several problems where programmers

were attempting to assign integer values to fixed decimal representations, it is apparent

not everybody understands the nature of integer data types.

The example, Table 2, lists Java integer representations. The variable type of INT

corresponds to the integer definition on the RPG D specs above. Note the minimum and

maximum values each integer type may represent.

Table 2

type size(bits) default value minimum value maximum value

byte 8 0 -128 +127

short 16 0 -32768 +32767

int 32 0 -2147483648 +2147483647

long 64 0 -9223372036854775808 +9223372036854775807

Table 3 shows a list of the values consistent with the DB2 database representations of

integer data types. Though IBM integer type terminology varies somewhat from the Java

primitive type designations, where SMALLINT corresponds to short integer and BIGINT

corresponds to long integer representation, the value representation is the same. (IBM

does not support the byte type integer representation.)

Table 3

type size(bits) default value minimum value maximum value

SMALLINT 16 0 -32768 +32767

INTEGER 32 0 -2147483648 +2147483647

BIGINT 64 0 -9223372036854775808 +9223372036854775807

Referring to either table, you can see the numeric value represented by an integer

(INT/INTEGER) data type can range from -2,147,483,648 to +2,147,483,647. Even

though the integer length may be represented as 4 bytes (32 bits), the precision extends to

ten digits. A 4-byte integer may represent a much larger numeric value than a 4-byte

fixed decimal field.

Page | 3

I have had to revise ILE applications where a developer has used integer values for

parameters in a procedure prototype, and after invoking the procedure, the returned

integer value has been assigned to a fixed (packed or zoned) decimal field. In many

instances there was no check of the value, or monitor block surrounding the assignment.

The attempt to add or set the value of a fixed decimal field from an integer value can lead

to a decimal overflow error, receiver to small to represent value. If the assignment

operation is not nested in a monitor block, the application program will give the operator

no option but to cancel the program. If the intent of a program operation is to move

integer values into fixed decimal fields, steps should be taken to insure that the integer

value does not exceed the minimum and maximum values for the fixed decimal field.

Sample 1
0021.00 D TotDiff s 4B 0

0292.00 IF TotDiff > 99999 or TotDiff < -99999;

0293.00 Iddlyh = 99999;

0294.00 ELSE;

0295.00 Iddlyh = TotDiff;

0296.00 ENDIF;

The code in Sample 1 shows IDDLYH, a 5-digit, zero decimal position, field, assigned a

value from the field TOTDIFF. The field, TOTDIFF, happens to be defined as an

integer. The simple assignment IDDLYH = TOTDIFF is enough to lead to problems in

the program.

The largest value you can represent in a 5-digit fixed decimal field (with no decimal

positions) is 99,999. As you can see from the tables, a 4-byte integer may contain a value

as large as 2,147,483,647, which cannot be represented in a 5-digit, fixed decimal field.

The problem is obvious; you cannot put 10-lbs of fertilizer, in a 5-lb bag, (organic, or

otherwise).To prevent the overflow error, test the integer value prior to assignment and

avoid the situation that produces the overflow. Ideally, then code a routine within the

application to report the overflow/exception.

Avoid the decimal overflow condition with program logic. If integers are used for

calculations, or parameters, and the value of integer may be assigned to a fixed numeric

field, either make sure the fixed decimal field is large enough to contain the integer value,

or test the value of the integer against the minimum/maximum value of the receiving field

prior to assigning the value.

(Note: There is a compiler option to tell the program to ignore the numeric overflow

when running the program. But this option does not apply to results of calculations

performed within expressions, thus you may still get overflow errors even when

TRUNCNBR(*YES) was specified on the CRTBNDRPG command.)

Page | 4

Fields that are defined as binary-type fields do contain integers but RPG programs don’t

necessarily consider binary and integer representation to be synonymous. This is

important! A binary field on a physical file will be represented as ‘9B 0’, occupying the

same 4-bytes as a ‘10I 0’ integer. So what is the problem? The problem arises when

reading a record with a binary field and trying to move it to an internal integer variable.

A ‘field mapping error’ will be generated.

Compile Options

 ctl-Opt DEBUG(*YES) OPTION(*SRCSTMT : *NODEBUGIO)

 DFTACTGRP(*NO) Main(CSG078RP) EXTBININT(*YES)

 ActGrp('DLYRPT') BndDir('QC2LE');

 D MsgInfo DS qualified

 D BytesRtn 10I 0

 D BytesAvail 10I 0

 D Severity 10I 0

 D MsgID 7A

 D Type 2A

 D Key 4A

 D 7A

 D CCSID_st 10I 0

 D CCSID 10I 0

 D DataLen 10I 0

 D DataAvail 10I 0

 D Data 1024A

.

.

.

 D DEC 4B 0

 D BIN 1 OVERLAY(DEC:2)

When is an integer not an integer? The answer, at least for IBM’s Power i OS is: when it

is a binary decimal. Binary-decimal format fields contain a sign (positive or negative) is

in the leftmost bit of the field and the numeric value is in the remaining bits of the field.

Positive numbers will have a zero in the sign bit; negative numbers are denoted by a one

in the sign bit and are in twos complement form. Both of the data structures shown

above contain integer representations. The 10I 0 subfield occupies the same number of

bytes as does the 4B 0 subfield. It is confusing.

Adding to the confusion is the fact a DDS field defined as 4B 0 may contain a value in 10

digit precision, the same as for signed integers: -2147483648 to +2147483647.

However, every input field read into the program in binary format is converted by the

compiler to a decimal field. The length of 4 is assigned to a 2-byte binary field; a length

of 9 is assigned to a 4-byte binary field. Because of the fields are treated as decimals, the

Page | 5

highest decimal value that can be assigned to a 2-byte binary field is 9999 (32767 is

greater than 9999, right?) and the highest decimal value that can be assigned to a 4-byte

binary field is 999 999 999.

This explains why trying to push an external binary decimal into an integer subfield

causes a mapping error to occur. There is a way to avoid the mapping error—refer to the

Compiler Options example. The EXTBININT keyword may be used to process

externally-described fields with binary external format and zero decimal positions as if

they had an external integer format. If the keyword is not specified or specified with a

value of *NO, an externally-described binary field is processed with an external binary

format.

- Steve Croy

